VIRTUAL TUTORIAL
SYNCHRONIZED CLOCKS

APRIL 2024
GREG ARMSTRONG
PRINCIPAL SYSTEM ARCHITECT
TIMING BUSINESS UNIT
RENESAS ELECTRONICS CORPORATION

WORKSHOP ON SYNCHRONIZATION AND TIMING SYSTEMS
MAY 7 - 9, 2024 | SAN DIEGO, CA
OUTLINE

- Time, Phase & Frequency
- Phase Locked Loops (PLL)
 - Principle
 - Response To Injected Noise
 - Operation Modes
- Clock Combining
TIME, PHASE & FREQUENCY

We all know what time is - unit is second [s]

Phase is the angle of a rotating vector; in clock terms: time related to the period of a repetitive signal - unit is radians [rad]

Frequency is a statistical term; number of events per second - unit is Hertz [Hz]
WHAT IS “SYNCHRONIZATION”

125MHz + x PPM

Counter

125MHz + y PPM

Counter

PLL

Counter

125MHz + x PPM

PLL

Counter

Clear (1 PPS)

1PPS = 1 Pulse Per Second

Count

Time

Count

Time

Count

Time

Not Synchronised

Frequency Synchronised (Syntonised)

Phase/Time Synchronised

1PPS = 1 Pulse Per Second

© 2024 Renesas Electronics Corporation. All rights reserved.
PHASE-LOCKED LOOP (PLL)

... A CONTROL SYSTEM THAT GENERATES AN OUTPUT SIGNAL Whose PHASE IS RELATED TO THE PHASE OF AN INPUT SIGNAL. THERE ARE SEVERAL DIFFERENT TYPES; THE SIMPLEST IS AN ELECTRONIC CIRCUIT CONSISTING OF A VARIABLE FREQUENCY OSCILLATOR AND A PHASE DETECTOR IN A FEEDBACK LOOP. WIKIPEDIA
WHAT DOES A PLL DO?

Generate a clock that is phase and frequency locked to an input clock.

- The output clock frequency can be of the same frequency, an integer multiple or a fraction of the input clock frequency.
- Input edge to output edge phase alignment can be achieved.

Input clock frequency to output clock frequency ratio must be a positive integer or fractional number.

- 19.44 MHz to 66/64*255/237*78125/77760*622.08 MHz is possible.
- 10 MHz to π MHz is not possible (afaik).

\[
u_{in}(t) = A \cdot \sin \left(2\pi f_{in}t + \phi_{in} \right)
\]

\[
u_{out}(t) = A \cdot \sin \left(2\pi f_{out}t + \phi_{out} \right)
\]
PLL BUILDING BLOCKS: PHASE COMPARATOR

The Phase Comparator establishes the “error” between the reference input and the clock output; using a feedback

Most Digital PLLs (DPLLs) use a Time to Digital Converter (TDC) for the Phase Frequency Detector (PFD) to measure the phase of the two clocks and produce a digital word representing the error

- TDC can be looked at as a timestamper, resolution determined by the sampling clock

The TDC timestamps the reference and feedback edges, and the PFD mathematically tracks the phase offset between the selected reference and feedback clocks

The measured phase difference can go well beyond 1 period, or Unit Interval (UI), of the reference and feedback clocks; thus, the phase comparator must be able to measure over a large range of multiple input/feedback clock periods

- Various telecom standards define a jitter & wander tolerance requirement - the widest is defined is 18µs

- For example, if the input clock has a nominal period of 8ns (125 MHz), then the jitter tolerance requirement equates to ± 1125 UI
The phase error is processed by the loop filter (LF) or low-pass filter (LPF), which filters out high frequency phase noise (jitter)

- LF is a combination of proportional and integral (PI) control, which generates a control signal for controlling the oscillator
- The integrator is an additional pole, therefore 2nd order (may be referenced as “Type 2” PLL)

The LF determines the bandwidth (BW) of the PLL (i.e. cut-off frequency)

- Other functionality, such as phase slope limiting (PSL), locking range, and holdover functionality may be done as well

The step response has an overshoot and the frequency domain transfer function has peaking.

- Phase corrections mainly done through proportional path, along with any PSL
- Frequency offset, or drift corrections, is done through the integrator path, including damping (i.e. gain peaking control)
PLL BUILDING BLOCKS: CONTROLLED OSCILLATOR

The controlled oscillator uses the control signal to speed up or slow down the output clock.

Most Digital PLLs replace the Voltage Controlled Oscillator (VCO) by a Digitally Control Oscillator (DCO) consisting of:

- a free-running crystal oscillator (XO)
- A digital synthesizer which pulls the frequency up or down using a Control Signal from loop filter (a digital word representing a fractional frequency offset (FFO))
PLL: USE WITH PACKET CLOCKS

A timing protocol, such as IEEE 1588, can be used as the phase (or time) comparator

- Still follows same model as PLL, but may introduce a packet selection block
- Without packet selection, the packet delay variation (PDV) will have a significant impact to the loop filter

The LF will typically be designed to support much lower update intervals of the phase error

- This is due to packet dropping, or to attenuate the impact of the PDV
- Typically requires a more stable local clock source (oscillator, or maybe physical layer assistance)
PLL: STEP RESPONSE & JITTER TRANSFER OF A TYPE 2 DPLL
PHASE LOCKED LOOPS (PLL)

RESPONSE TO INJECTED NOISE
PLL: JITTER & WANDER FILTERING

What is jitter/wander?

▪ Jitter, wander, phase noise is a variation of the clock’s frequency/period/phase
▪ Essentially a phase modulation (due to noise or other disturbances) of the carrier clock when compared to an ideal reference
 ▪ Jitter = short-term variations
 ▪ Wander = long-term variations
▪ ITU-T G.810 defines noise frequencies <10Hz as wander and frequencies ≥10Hz as jitter
 ▪ In Telecom, the period of the clock is called Unit Interval (UI)

The function of a PLL is to attenuate jitter and transfer wander
▪ In other words, tolerate noise at the input without losing lock to the reference
PLL: RESPONSE TO INJECTED NOISE

PLL is a low-pass filter for input noise

\[x_{\text{OUT}}(t) = x_{\text{in}}(t) * h_{\text{in}}(t) \]
\[X_{\text{OUT}}(s) = X_{\text{in}}(s) \cdot H_{\text{in}}(s) \]
where \(h_{\text{in}}(t) \) is impulse response
\[H_{\text{in}}(s) = \text{transfer function} = \text{Laplace}\{h_{\text{in}}(t)\} \]

PLL is a high-pass filter for oscillator noise

\[x_{\text{OUT}}(t) = x_{\text{osc}}(t) * h_{\text{osc}}(t) \]
\[X_{\text{OUT}}(s) = X_{\text{osc}}(s) \cdot H_{\text{osc}}(s) \]
where \(h_{\text{osc}}(t) \) is impulse response
\[H_{\text{osc}}(s) = \text{transfer function} = \text{Laplace}\{h_{\text{osc}}(t)\} \]
PLL MODES: LOCKED, HOLDOVER AND FREERUN

- **Freerun mode;** the DPLL does not track any input clock. The output clock is at the centre frequency, offset is zero.
 - i.e. switch is open.

- **Normal / Lock mode;** the DPLL tracks the input clock. The output clock is phase & frequency locked to the input clock.
 - i.e. switch is in position 1.

- **Holdover mode;** Typically used when the input clock fails. The PLL no longer tracks its input clock but uses the last valid frequency offset from memory (MEM). The proportional path is reset to zero and the integrator frozen at its last value. The phase detector is reset to flush out its phase history.
 - i.e. switch is in position 2.
 - clock becomes an autonomous synchronization source

In freerun mode or after entry into holdover mode, frequency is subject to ageing drift and to the influence of temperature.
PLL MODES: HOLDOVER @ CONSTANT TEMPERATURE

Fractional frequency:

\[y(t) = y_0 + D \cdot t \]

where \(y_0 \) = initial frequency offset
\(D \) = frequency drift rate (constant)

Time error:

\[x(t) = x_0 + y_0 \cdot t + \frac{D}{2} \cdot t^2 \]

where \(x_0 \) = initial phase offset
\(y_0 \) = initial frequency offset
\(D \) = frequency drift rate (constant)
PHASE LOCKED LOOPS (PLL)

CLOCK COMBINING
COMBINING TWO PLLS

Phase Noise (In1) -> PD -> LPF -> DCO -> Phase Noise (Out1)
Phase Noise (In2) -> PD -> LPF -> DCO -> Phase Noise (Out2)

Phase Noise (Osc1) -> DCO -> Phase Noise (Out1)
Phase Noise (Osc2) -> DCO -> Phase Noise (Out2)

Phase Noise (Out1) vs Frequency (F1)
Phase Noise (Out2) vs Frequency (F2)
TWO PLLS: RESPONSE TO INJECTED NOISE

Phase Noise (In1) → PD → LPF → DCO → Phase Noise (Out)

Phase Noise (In2) → PD → LPF → DCO → Band-pass filter for In2 Noise to Out → Phase Noise (Osc2) → DCO

Band-pass filter for In2 Noise to Out

F_1 F_2
TWO PLLS: SPECTRAL DENSITIES

Three spectral densities (phase-time) … … combined by the 2-input PLL, … … result in this out spectral density:

\[
\begin{align*}
|S_{\text{IN1}}(f)| & \\
|S_{\text{IN2}}(f)| & \\
|S_{\text{OSC}}(f)| & \\
\end{align*}
\]

\[
\begin{align*}
S_{\text{OUT}}(f) & \quad (\log-\log scales) \quad f [\text{Hz}] \\
\end{align*}
\]
TWO PLLS: APPLICATIONS

- **GNSS & Cesium clock** in enhanced Primary Reference Time Clocks (ePRTC)

- **PTP & SyncE** in boundary clocks (T-BC) and slave clocks (T-TSC)

Note: PLL with 2 inputs is not the only way of combining 2 references
G.8273.2 T-BC: RESPONSE TO INJECTED SYNCE NOISE

A band-pass filter for SyncE Noise to PTP (Out)

SyncE Noise (In) → PD → 1.2Hz LPF → DCO → SyncE (Out)

TCXO

offsetFromMaster → 0.1Hz LPF → DCO → PTP (Out)

PTP Stack

Time Stamp Unit (TSU)

PTP Network

Very little PDV

0.05 0.1 1 10
Frequency, Hz

Amplitude, dB
Timing is the heartbeat of the system